Kinetically guided colloidal structure formation
نویسندگان
چکیده
منابع مشابه
Kinetically driven ordered phase formation in binary colloidal crystals.
The aggregation of binary colloids of the same size and balanced charges is studied by Brownian dynamics simulations for dilute suspensions. It is shown that, under appropriate conditions, the formation of colloidal crystals is dominated by kinetic effects leading to the growth of well-ordered crystallites of the sodium-chloride (NaCl) bulk phase. These crystallites form with very high probabil...
متن کاملGlacier moraine formation-mimicking colloidal particle assembly in microchanneled, bioactive hydrogel for guided vascular network construction.
This study demonstrates that a new method to align microparticles releasing bioactive molecules in microchannels of a hydrogel allows the guiding of growth direction and spacing of vascular networks.
متن کاملRoutes to colloidal gel formation
We discuss features of simple inter-particle potentials which are able to generate low-packing fraction arrested states, i.e. gels, in the absence of a macroscopic phase separation phenomenon. We suggest that the ratio between surface and bulk free energy is crucial in favoring ideal gel states. Two possible models for gels, one based on the competition of short range attraction and long range ...
متن کاملFormation of kinetically trapped nanoscopic unilamellar vesicles from metastable nanodiscs.
Zwitterionic long-chain lipids (e.g., dimyristoyl phosphatidylcholine, DMPC) spontaneously form onion-like, thermodynamically stable structures in aqueous solutions (commonly known as multilamellar vesicles, or MLVs). It has also been reported that the addition of zwitterionic short-chain (i.e., dihexanoyl phosphatidylcholine, DHPC) and charged long-chain (i.e., dimyristoyl phosphatidylglycerol...
متن کاملCovalent ladder formation becomes kinetically trapped beyond four rungs.
Scrambling experiments suggest that the self-assembly of 2D ladders via imine metathesis is kinetically trapped at four or more rungs. Consequently, ladders containing five or more rungs cannot be synthesized in high yield under the conditions used, as misaligned out-of-register byproducts cannot self-correct.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2016
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1605114113